In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

نویسندگان

  • Chenfei Shen
  • Mingyuan Ge
  • Langli Luo
  • Xin Fang
  • Yihang Liu
  • Anyi Zhang
  • Jiepeng Rong
  • Chongmin Wang
  • Chongwu Zhou
چکیده

In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Ti3SiC‌‌2-SiC max phase composites via in-situ and ex-situ synthesis

Recently, a series of three-component compounds with the combination of Mn+1AXn known as Max phases have been considered as a new material. One of the most important features of Max phases, is the self-healing property of them. The main reason for considering Max Phases is a unique collection of unusual properties including their metallic, ceramic, physical, and mechanical properties. One of th...

متن کامل

Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si struct...

متن کامل

In Situ Formation of SiC/CNT Ceramic Nanocomposite by Phenolic Pyrolysis

In this research, using pyrolysis of phenolic resin in the presence of silicon particles, the SiC ceramic composite is formed. The samples were prepared by introducing 30, 35, 40, 45 and 50 wt% of Si particles to the phenolic resin. The samples were cured at 180°C then carbonized at 1100°C. The final carbonized C/Si composites are hot-pressed at 1500°C in inert atmosphere, which is more than th...

متن کامل

In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhe wileyonlinelibrary.com DOI: 10.1002/aenm.201200024 Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, wh...

متن کامل

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016